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a b s t r a c t

Supercapacitors use nanoporous electrodes to store large amounts of charge on their high surface areas,
and use the ions in electrolytes to carry charge into the pores. Their high power density makes them a
potentially useful complement to batteries. However, ion transport through long, narrow channels still
limits power and efficiency in these devices. Proper design can mitigate this. Current collector geometry
eywords:
ltracapacitors
apacitors
lectrical energy storage

must also be considered once this is done. Here, De Levie’s model for porous electrodes is applied to
quantitatively predict device performance and to propose optimal device designs for given specifications.
Effects unique to nanoscale pores are considered, including that pores may not have enough salt to fully
charge. Supercapacitors are of value for electric vehicles, portable electronics, and power conditioning in
electrical grids with distributed renewable sources, and that value will increase as new device fabrication
methods are developed and proper design accommodates those improvements. Example design outlines

re pro
for vehicle applications a

. Introduction

Electrochemical double-layer supercapacitors have been pro-
osed as complements to batteries in both fixed large-scale energy
torage applications as well as in electric vehicles and portable
lectronics [1–4]. As with any capacitor, they store energy in an
lectric field between a pair of conducting materials, or through a
ast interfacial redox reaction. They store less energy in a given vol-
me than batteries, but the charging and discharging rates of the

atter can be limited by rates of chemical reactions and of ion trans-
ort within the electrodes. Supercapacitors do not rely on these
rocesses, so they can deliver power more rapidly [5]. However,
ecause they store energy only at interfaces, their electrodes must
e highly porous to include a high surface area in a given volume.

on transport through long, narrow pores, and between electrodes,
an still limit charge and discharge rates. De Levie first addressed
he charging rates of pores several decades ago [6,7], and many
laborations have been developed since then, with application to
iverse electrode processes. The emphasis has been directed more
oward electrochemical reaction kinetics and not to supercapaci-
or optimization [8–12]. Refinements on the version that considers

nly electrostatic charging include treatment of finite pore length
13,14], variable pore cross section [15], an ensemble of pores of
ifferent sizes [16], spatially nonuniform resistivity [17] and capac-

tance [18], and generalized impedance elements [19,20]. A model

∗ Tel.: +1 925 294 6613; fax: +1 925 294 3020.
E-mail address: drobins@sandia.gov.

378-7753/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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posed and compared.
© 2009 Elsevier B.V. All rights reserved.

starting from the Nernst–Planck equation has also been developed
[21]. The resistivity of the electrode is often considered negligible,
although this has been incorporated into the generalized models.

Newman et al. have developed porous electrode models of value
for common device arrangements, including packed beds of porous
particles, where typically the porous material is treated as a macro-
scopic medium with unique properties [22–25]. This approach
has proven valuable for practical purposes, although it involves
assumptions and complexities adapted for such systems. De Levie’s
single-pore treatment is still conceptually useful as a modular,
bottom-up approach that provides a simple path to understanding
of supercapacitors with near-ideal device geometries.

Since the De Levie model was first proposed, many improve-
ments have been made toward the synthesis of electrodes with well
defined nanoscale porosity and high aspect ratio [26–30] as well as
electrolytes and insulating spacers with improved properties [31].
Hierarchical and interpenetrating material structures are an active
area of study [32–34]. Nanoscale effects that change classical pre-
dictions of resistivity and capacitance have been predicted [35] and
observed [34]. Further extension and application of the model could
guide design of larger scale, faster capacitors that make use of new
fabrication methods and take advantage of nanoscale effects.

Some important physical considerations for De Levie’s capaci-
tor model have been only briefly examined, including the effects of
resistance outside a pore, and of the case where the electrode con-

sumes enough ions to increase resistivity, which can be important
for electrodes with nanometer-scale pores [1,7]. The implications of
the model for supercapacitor design have also not been thoroughly
examined from this perspective. Energy and power analyses have
been performed on supercapacitors using a simple RC circuit model

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:drobins@sandia.gov
dx.doi.org/10.1016/j.jpowsour.2009.12.004
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ig. 1. Geometry of pore model. R represents resistance per unit length, while C
epresents capacitance per unit length; these elements are distributed continuously
ver a finite length.

36,37], which is often adequate, but less so in an optimized device.
everal recent reports have described the optimal design of a super-
apacitor as one with hierarchically porous electrodes [38–40].
thers have pointed out that, for batteries, interpenetration of the

wo opposing electrodes leads to optimal power and energy den-
ities [41]. An analysis of the relationship between geometry, pore
esistance, and interelectrode resistance can help to clarify design
pproaches.

The capacitive case of De Levie’s model for finite pores with
xternal resistance has been understood by prior authors, but
mportant concepts relevant to device design have not been stated,
o the basics of the model are presented in Section 2. The power
nd energy densities are then derived for arrays of electrode pairs,
hich constitute a basic model of a supercapacitor. These figures

f merit are analyzed as a function of model parameters for mate-
ials, device geometry, voltage, and frequency, accounting for the
ossibility of depletion of free ions and of power limitation by cur-
ent collectors. A design strategy to obtain optimal performance is
resented, providing targets for future development of fabrication
ethods. Example designs for electric vehicle regenerative braking

re proposed.

. De Levie model for single-pore half-cell

.1. Background

De Levie covered the case of a semi-infinite capacitive pore [6]
nd briefly discussed a finite pore [7]. Keiser et al. studied the
mpedance of a finite pore in detail [15]. These works have been
eviewed by Conway [1]. For power and energy analyses, the behav-
or of admittance must be carefully considered, with attention to
he effect of finite pore length and external solution resistance. This
s helped by an understanding of the spatial variation of current and
oltage in the entire circuit. These additional aspects are described
ere, presented in a form easily applied to spreadsheet analysis of
xperimental data.

.2. Circuit model

In a supercapacitor, pores in an electrode are closely packed,
nd opposing electrodes are also close. This can be treated as an
rray of pairs of cylindrical pores, each of length L and separated
y a finite length D. Because the pair is symmetric, it can be further
implified to a one-dimensional single-pore half-cell, reflecting half
f the pair. Taking x = 0 at the end of one pore, in the half-cell, there is
fictitious contact between the electrodes at x = L + D/2. The voltage
in across a half-cell is half of that across a symmetric electrode pair.
De Levie treats the pore as a long prismatic electrode that
ehaves like a finite transmission line (Fig. 1) with resistance in the

on-conducting phase per unit length R and capacitance per unit
ength C. The resistivity of the electrode itself is considered negligi-
le. Outside the pore is the external resistance Rx, representing ion

Re I(x) = VL

√
ω�/2

RL

[sinh((x/L)
√

ω�/2
rces 195 (2010) 3748–3756 3749

conduction between the pore entrance and a point halfway to the
opposing electrode. Note that Rx is a resistance and not a resistance
per unit length.

2.3. Governing equations and boundary conditions

De Levie’s basic equations describing current and voltage within
the pore are:

dV

dx
= −IR,

dI

dx
= −C

dV

dt
(1)

which can be combined to

dV

dt
= 1

RC

d2V

dx2
(2)

by taking the spatial derivative of the resistance equation and sub-
stituting the capacitance equation. The current also obeys Eq. (2),
and it is equivalent in form to the diffusion equation. Outside the
pore, the current is constant, and voltage increases linearly by IRx

from the pore entrance to the cell midpoint.
Of primary interest is the current response to a sinusoidal volt-

age input at the pore entrance. For this, the boundary conditions
at the bottom of the pore (x = 0) are I(0, t) = 0 and V(0, t) = V0 cos(ωt)
where V0 is arbitrary, although it is preferable to specify the voltage
at the end of the pore VL or across the entire half-cell Vin.

2.4. Voltage and current solutions

Solutions can be found by separating into time- and space-
dependent factors V(x) exp(±iωt); substitution reveals that V(x) =
exp(x

√±iωRC). Expansion of
√

i allows rearrangement into
purely real functions that can be written in the form V(x, t) =
exp(±x

√
ωRC/2)cos(ωt ± x

√
ωRC/2), which can be combined to

satisfy the boundary conditions. These can be further rearranged
into a form |V(x)|cos(ωt +∠V(x)), which is the real part of the com-
plex voltage |V(x)|exp i∠V(x)exp iωt, and can be expressed as

V(x, t) = Re V(x)cos(ωt) − Im V(x)sin(ωt) (3)

where Re V = |V| cos∠V and Im V = |V| sin∠V. With voltage magni-
tude VL normalized at the pore entrance, but phase measured
versus x = 0, and with time constant � = RCL2, the components are

Re V(x) = VL cosh((x/L)
√

ω�/2)cos((x/L)
√

ω�/2)√
cosh2(

√
ω�/2) − sin2(

√
ω�/2)

(4)

Im V(x) = VL sinh((x/L)
√

ω�/2)sin((x/L)
√

ω�/2)√
cosh2(

√
ω�/2) − sin2(

√
ω�/2)

(5)

The voltage at the pore entrance can be expressed in terms of
bounded functions

V(t)=VL cos(
√

ω�/2)cos(ωt)−VL tanh(
√

ω�/2)sin(
√

ω�/2)sin(ωt)√
1−sin2(

√
ω�/2)sech2(

√
ω�/2)

(6)

which can make calculations easier. The hyperbolic secant function
can be taken as zero when its argument is much larger than 10.

The current can be determined by taking the spatial derivative
of V and dividing by R. It is positive when the voltage is decreas-
ing from the pore entrance to the bottom, and represents positive

charge flowing from the pore entrance to the bottom.

)cos((x/L)
√

ω�/2) − cosh((x/L)
√

ω�/2)sin((x/L)
√

ω�/2)]√
cosh2(

√
ω�/2) − sin2(

√
ω�/2)

(7)
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F 1. Right: Current at the same instant versus position, normalized by the prefactor to help
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ig. 2. Left: Voltage versus position for various frequencies at the instant where VL =
how the different curve shapes. Actual peak currents increase monotonically.

m I(x) = VL

√
ω�/2

RL

[sinh((x/L)
√

ω�/2)cos((x/L)
√

ω�/2) + cosh((x√
cosh2(

√
ω�/2) − sin2(

gain, a simpler form is obtained for the value at the pore entrance.

e I = VL

√
ω�/2

RL

[tanh(
√

ω�/2)cos(
√

ω�/2) − sin(
√

ω�/2)]√
1 − sin2(

√
ω�/2)sech2(

√
ω�/2)

(9)

m I = VL

√
ω�/2

RL

[tanh(
√

ω�/2)cos(
√

ω�/2) + sin(
√

ω�/2)]√
1 − sin2(

√
ω�/2)sech2(

√
ω�/2)

(10)

n the space between electrodes, the current is constant, and the
oltage extends linearly by

(x, t) = V(L, t) + I(L, t)Rx
(x − L)
(D/2)

L < x <
D

2
(11)

uch of the range of behavior of voltage and current within the pore
s shown in Fig. 2. At low frequencies, the voltage is independent of

osition, and the current decreases linearly in the pore, traveling
n average distance of L/3 into the electrode. At high frequencies,
amped voltage and current waves propagate into the pore, and
oth are approximately zero at the bottom of the pore. A transition
etween the two occurs between ω = 1/� and 10/�.

Fig. 3. Admittance magnitude (left) and phase (right) for unit pore half-cell (RL = 1
ω�/2)sin((x/L)
√

ω�/2)]

�/2)
(8)

2.5. Admittance and impedance

The admittance is the complex ratio of current to voltage and is
a helpful way to understand pore behavior; when incorporating Rx,
it is experimentally accessible, and is important for understanding
power and energy densities. For the pore alone, it can be expressed
as

Re Y=
√

ω�/2

RL

tanh
√

ω�/2−cos
√

ω�/2 sin
√

ω�/2 sech2
√

ω�/2

1−sin2
√

ω�/2 sech2
√

ω�/2
(12)

Im Y=
√

ω�/2

RL

tanh
√

ω�/2+cos
√

ω�/2 sin
√

ω�/2 sech2
√

ω�/2

1−sin2
√

ω�/2 sech2
√

ω�/2
(13)
The external resistance can be added to 1/Y; the circuit admittance
is Yx = Y/(1 + RxY) or

Re Yx = Re Y + Rx|Y |2
(1 + Rx Re Y)2 + (Rx Im Y)2

(14)

�, CL = 1 F) and external solution resistance Rx in � varying by factors of 3.
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ig. 4. Real power (left) and reactive power (right) for unit pore half-cell (RL = 1 �,

m Yx = Im Y

(1 + Rx Re Y)2 + (Rx Im Y)2
(15)

The symbol Y, not Yx, is used for the circuit admittance henceforth.)
hile admittance is most useful for energy and power analyses,

ncorporating Rx is easier using the impedance, which is the com-
lex ratio of voltage to current. In fact, De Levie noted that this
an take the very compact form Z = Rx + (RL/

√
iω�)coth

√
iω� [7];

he expanded form appears elsewhere [1,15]. Given the circuit
mpedance, circuit admittance can be obtained from Re Y = Re Z/|Z|2
nd Im Y = −Im Z/|Z|2.

The shapes of the admittance magnitude and phase are shown
n Fig. 3. At low frequencies, when the pore charges completely,
he admittance magnitude is ωCL and phase is 90◦. At interme-
iate frequencies, if Rx is negligible, the admittance magnitude

s
√

ωC/R and phase is 45◦; charging does not depend on length
ecause the pore is charging incompletely. The transition to this
ccurs between ω = 1/� and 10/�, as observed in Fig. 1. However, if
xternal resistance is high, most of the voltage drop occurs there
nd the electrode behaves like a discrete RC circuit, with a high-
requency admittance of 1/Rx and no high-frequency phase shift.

hile the distributed RC effect from the pores is easily observed
n conventional Nyquist impedance plots, its effect in Bode plots of
he admittance is mostly obscured when Rx is larger than RL/3, the

aximum value of Re Z for the pore [15].

. Power, energy, and efficiency of pore half-cell

A capacitor made from porous electrodes is a linear system.
rom the frequency response of admittance and impedance, one
an easily gain knowledge of response to any signal that is a super-
osition of frequencies. Power and energy are not linear, so this
enerality is lost, but the frequency response still provides informa-
ion about charge and discharge timescales. Other waveforms have
een considered using simpler [42] or more complex [22] circuit
odels. The power S is the product of the time-dependent voltage

nd current:

= Vin cos(ωt) · Vin[Re Y cos(ωt) − Im Y sin(ωt)] (16)

= V2
in
2

[Re Y(1 + cos(2ωt)) − Im Y sin(2ωt)] (17)

he first term in the brackets accounts for the real power, which

ows only in one direction, is dissipated as heat by the resistance,
nd has a finite average value of (1/2)V2

in Re Y . The second term
ccounts for the reactive power, which is alternately accepted and
elivered by the capacitance, charging and discharging with each
olarity in a cycle. Because it flows equally in both directions, its
F) where Vin = 1 V and external solution resistance Rx in � varies by factors of 3.

average over a cycle is zero, but for charging only it is (1/�)V2
in Im Y .

The complex power YV2
in/2 captures the real and reactive power

without including the average value.
The complex power components are shown in Fig. 4. At finite Rx,

peaks are observed in the reactive power, suggesting optimal oper-
ating points. One peak appears at the point where the phase crosses
through 45◦, and the two components are equal, representing an
impedance-matched condition. When that resistance is small com-
pared to RL, the power is near its optimum over a broad range of
frequencies. A higher peak power appears at higher frequencies
when Rx is less than 0.23 (a value determined numerically). How-
ever, under these conditions, real power is also high and increasing
with frequency. To operate at steady state in this regime, it may
be necessary to dedicate device volume to heat dissipation, which
would reduce power density, although this high-frequency behav-
ior may be useful for accommodating occasional transients.

The energy stored in the capacitor is the integral of the reactive
power starting from t = 0:

E = 1
2

CLV2
in

(
RL

ω�
Im Y

)
cos2(ωt) (18)

The peak instantaneous value of the stored energy is shown in
Fig. 5 with a linear ordinate, highlighting the significance of the
rolloff near 1/�. At high Rx, the rolloff occurs instead at 1/RxCL and
is steeper at high frequencies than when Rx is small. Fig. 6 also
illustrates the tradeoff between power and energy as frequency
is increased from the bottom right to left. The power peaks when
stored energy is about half its low-frequency value, except below
Rx/RL = 0.23, when a higher peak occurs as discussed above.

Efficiency � can be defined as the ratio of energy recovered
from the capacitor after a charge–discharge cycle (the peak energy
shown in Fig. 5) to energy given to the capacitor, which is that plus
the integral of real power over that time.

� = Im Y

� Re Y + Im Y
(19)

The frequency dependence of cycle efficiency is shown in Fig. 6.
It resembles the shape of the admittance phase, but rolls off less
steeply. For the efficiency of charging only (not the whole cycle),
the Re Y term is divided by 2; this doubles the high-frequency values
and increases intermediate values.

4. Device geometry; energy and power density
4.1. Device geometry

A macroscopic supercapacitor can be modeled by considering a
parallel array of pore pairs: a device composed of two planar elec-
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ig. 5. Left: Energy stored in unit pore half-cell (RL = 1 �, CL = 1 F) and external so
ombining the curves in the left plot with those in Fig. 4.

rodes, each with a thickness L, separated by a distance D by an
on-conducting phase and connected across a load or source. Each
lectrode contains an array of closely packed cylindrical pores of
adius r. A porosity parameter P represents the fraction of the elec-
rode surface area occupied by pore entrances, which for cylindrical
ores is the same as the volume fraction. Table 1 gives values of this
arameter for various pore arrangements.

The hexagonal geometry spaced by 1–2 radii is frequently
bserved in porous alumina, block copolymers, and surfactant-
emplated materials [43]. Dealloyed nanoporous gold is a useful
est material among porous conductors. Although its pores are dis-
rdered and not cylindrical, high aspect ratios r/L can be achieved
44]. Electron tomography has shown that the typical pore volume
raction is 0.5 [26].

This planar electrode pair can presumably be stacked, rolled
r pleated (or a combination of these) to fill a given volume [45].
tacking electrodes puts capacitors in series, increasing operating
oltage without increasing current. Rolling or pleating puts capac-
tors in parallel, increasing current but not voltage. Two half-cell
lectrodes with closed-ended pores placed back-to-back are equiv-
lent to a single electrode of the same thickness with open-ended

ores, assuming that each opening faces an equivalent counterelec-
rode pore [7]. This arrangement can be obtained in rolling, and in
leating except at corners. It could be achieved in stacking, except
hat the midpoint of the pore must be blocked to prevent ion trans-
ort, because in this case each electrode is an anode on one side

ig. 6. Cycle efficiency of unit pore half-cell (RL = 1 �, CL = 1 F) where external solu-
ion resistance Rx in � varies by factors of 3.
resistance Rx in � varying by factors of 3. Right: Reactive power versus energy,

and cathode on the other. These arrangements of electrode pairs
provide building blocks for a three-dimensional device.

4.2. Dependence of circuit parameters on geometry

To predict performance of a device design, the resistance and
capacitance per unit length of a pore can be expressed as R = �/�r2

and C = 2�rCdl, resulting in time constant � = 2�CdlL2/r, where r is
the pore radius, � is the solution resistivity, and Cdl is the capac-
itance per unit area of a planar interface made from the same
materials [15]. If parallel cylindrical pores are packed closely with
a porosity parameter P, the number of pores per unit volume is
P/�r2L and multiplying this by CL gives capacitance per unit volume
Cvol = 2PCdl/r. Multiplying by L gives capacitance per unit electrode
area Carea = 2PCdlL/r. Similarly, dividing RL by P/�r2 gives an area
resistance Rarea = �L/P. The product of Rarea and Carea gives the char-
acteristic time of a single pore.

For an isolated pore, the external resistance would be similar
to that of a microelectrode Rx = �/2�r [46]. However, pores in a
supercapacitor are packed closely, and the current path available to
each pair of pores is narrow. Typically D � r, and the interelectrode
region generally contains an insulating spacer with porosity Px, so
the current path available to each single-pore half-cell is contained
by a prism of length D/2 and wider than the pore area by a factor
Px/P. The external area resistance is then Rx,area = �D/2Px. To obtain
the macroscopic current density, area impedance, admittance per
unit area, or related functions, one simply substitutes Rarea for RL,
Carea for CL, and Rx,area for Rx in the relevant equation. Experimen-
tal data can be fit to these to obtain estimates of parameters and
compared to design predictions.

4.3. Power and energy densities

The main figures of merit for energy storage devices are
energy density and power density. These can be obtained from
the energy and power per unit volume by dividing by the
thickness of the half-cell L + D/2. They can be written as prod-
ucts of dimensionless functions of dimensionless parameters ω�,
(D/2L) = (Rx,area/Rarea)(Px/P), and prefactors that affect the ordinate
scale in Fig. 7:
E = CvolV
2
in

2
Rarea Im Y

ω�(1 + D/2L)
, S = CvolV

2
in

�

Rarea Im Y

(1 + D/2L)
(20)

As Fig. 7 shows, energy and power density decrease and drop off
more sharply as Rx increases.
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Table 1
Porosity parameter P for various arrangements of cylindrical pores. The spacing is
in units of pore radius. Dotted line indicates unit cell.

Spacing P

0 �/4 = 0.79

1 �/9 = 0.35

2 �/16 = 0.20

0 �/2
√

3 = 0.91

1 2�/9
√

3 = 0.40

2 �/8
√

3 = 0.23

Fig. 7. Energy density (left) and power density (right) of unit-porous electrode half-cell (R
in � cm2 varies by factors of 3. Porosity ratio P/Px is 0.5 and L is 1 cm.
rces 195 (2010) 3748–3756 3753

4.4. Energy density scaling limits: electrolyte capacity

Holding ω� constant, decreasing r increases E without changing
S. Apparently, once r and D are made as small as possible, L can
be chosen to tune the frequency of peak power, resulting in an
optimal device. However, lower bounds exist for r and D because
the electrolyte must contain enough ions to charge the capacitive
interface. The number of monovalent ions in a complete single-
pore cell (both electrodes) is 2�r2L[1 + (D/2L)(Px/P)]c where c is the
salt concentration, and the number needed to fully charge a pore is
2�rLCdlVin/F, where F is Faraday’s constant, so there is just enough
salt to charge the pore when

D

2L
= P

Px

(
r∗

r
− 1

)
(21)

r∗ = CdlVin

Fc
(22)

If r > r*, there are already enough anions and cations in the two pores
to charge each of them. However, the resistivity also depends on
concentration, and concentration of unbound ions will drop signif-
icantly under this condition [1,7]. An appropriate margin should be
included in device design. The salt concentration will generally be
near saturation, typically 1 M, and the voltage is bound by the redox
breakdown voltage of the electrolyte, typically 1–4 V. For 1 M, 1 V
and Cdl = 20 �F cm−2 (a typical value for a metal–electrolyte inter-
face [47]), a 4 nm diameter pore contains just enough salt. At or
below that point, D must be increased to provide a salt reservoir,
resulting in

E = PCdlV
2
in

(1 − P/Px)r + (P/Px)r∗
Rarea Im Y

ω�
(23)

The second term in the denominator limits the energy density ben-
efit of decreasing pore diameter; the prefactor can be no larger than
FcVin, the extreme case where the interelectrode spacing domi-
nates the volume and all ions of each sign participating in charging.
When r = r*, it is already that times P, the case where interelectrode
spacing is negligible. Because D and Rx increase as r decreases, the
rolloff of the dimensionless part sharpens and moves to lower fre-
quency, and maximum power is decreased. Fig. 8 shows the effect
of increasing Vin so that the critical radius is exceeded. Instead of
increasing quadratically, the energy density creeps upward only
slightly at low-frequency, and the high-frequency behavior is atten-

uated as noted. Power density behaves similarly, although the
resistivity increase, not accounted for here, would cause further
limitation.

This suggests an alternative design approach, assuming that one
wants to maximize energy density without paying a significant

area = 1 � cm2, Carea = 1 F cm−2) where Vin = 1 V and external solution resistance Rx,area
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Fig. 8. Energy density (left) and power density (right) as voltage is increased, t

ower density penalty. The pore radius should be at or above the
ritical radius, and the electrode spacing should be kept as small
s practical. Again, L can be chosen to tune the frequency of peak
ower. To incorporate a margin m to prevent salt depletion from
lowing charging time, an alternative radius is computed (m is per-
aps 2 or 3):

= mr∗

(1 + (D/2L)(Px/P))
(24)

ith other parameters fixed, the pore radius should be the greater
f this value and r*. In some cases, specifically adsorbed ion pairs
n the pore walls may serve as a reservoir that keeps resistivity low
ithout the need for this margin [48,49]. However, the effect of this

n conductivity in pores is in need of further study. Furthermore,
ther nanoscale effects including resistivity increases due to pore
all interactions [35], or capacitance changes due to double-layer

verlap [50] or ion desolvation [51] are glossed over by applying
his margin; each of these effects provides opportunities for further
ptimization.

.5. Power density scaling limits: current collection

As the previous section notes, the power density prefactor is
ot usefully adjusted by r. However, it is strongly affected by L. The
ssumption has been made that charge is stored only pore walls,
nd current paths cannot be meaningfully less than the pore radius.
o, L = r* is an extreme case where D can still be less than or equal
o L. At ω = 1/�, the power is near the peak value, and the energy
ensity is near half its low-frequency value, depending on the value
f D.

≈ CvolV
2
in

2�
= P(Fc)2

2�C2
dl

(25)

or the example in the previous section, and taking � = 1 � cm, this
umber exceeds 1015 W L−1.

In general, IR drop through electrodes, current collectors, or
evice contacts will limit this. The electrode resistivity �m has been
ssumed zero, but will generally not be below 20 �� cm, a typical
alue for metals. The approximation is fair along the length of a
ore, but not necessarily for delivering to a remote load. In analogy
o the low-frequency pore area resistance �L/3P and the interelec-
rode area resistance �D/2Px, an electrode area resistance is �mLm
here Lm is the distance to the load. The ratio of Lm to (L/3P + D/2Px)
hould be less than �/�m to avoid limiting power. If it is desirable
o make the device leads narrower than the overall device, Lm must
e reduced in proportion to that area ratio and the leads tapered to
aintain a pathway to each pore.
y increasing the critical radius r*. Other parameters remain the same as Fig. 7.

Passing current perpendicular to the pores is necessary for
pleated or rolled structures, and involves a scaling limit. The
lateral current through the electrode experiences a sheet resis-
tance of approximately �m/(1−P)L, with some dependence on pore
geometry. Comparing to the area resistance of the pores shows
that the aspect ratio Lpleat/L of this pathway must be kept below√

(�/3�m)(1 − P)/P to avoid limiting power. Also, in this case the
distance to a thicker conductor must be comparable to Lpleat. This
is about 100 with the above values, and will limit the use of rolls or
pleats to increase device volume or make a device more compact.

A device composed of stacked electrodes faces a different limit.
The operating voltage and device resistance increase in proportion
to the number of layers. This number will be limited by fabrication
cost and the voltage requirements of the external circuit, and 100
may be a representative value for that. At the top and bottom of
the stack, a budget of �/�m applies for reduction of area and exten-
sion of length of the contact conductor versus an electrode layer,
as described above. To increase device volume beyond that limit,
power must be increased by increasing the area of each electrode,
and also the area of the contacts. Stacking and pleating can be com-
bined to keep the device compact, as long as the area of the end
layers of the stacks embedded within the pleats is accounted for in
the budget.

One or two dimensions of a maximum-power device are
thus bound. The energy stored by a cube-shaped maximum-
power capacitor, according to the above example, is limited to
PFcV(100r*)3 which is 0.4 pJ. More generally, there will often be
a tradeoff between capacitor geometry and achieved power. Fig. 9
illustrates the device geometries outlined here that address this.
These certainly present a challenge to fabricate economically,
although as noted in the introduction, rapid progress is being made
on relevant techniques, and the strategy proposed here may help
guide that.

5. Example application

5.1. Materials

In an example application the following assumptions are made.
It is possible to fabricate electrodes of any desired geometry, but
material constraints exist: Cdl = 20 �F cm−2 and �m = 20 �� cm are
representative values for electrode materials of interest, P = 0.5,

and electrode materials do not limit the voltage stability window.
Important electrolyte parameters are the voltage stability window
of a solute and solvent combination, the concentration of anions
and cations (assumed the same here), and the resistivity. Table 2
presents representative values for an aqueous electrolyte at about
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Fig. 9. Schematic of pleated (left), stacked (center), and

he maximum known conductivity; a nonaqueous electrolyte, in
hich ion concentrations and conductivities are lower but voltage
indows are higher; and an ionic liquid, which has a higher ion con-

entration but higher resistivity due to high viscosity [52]. Note that
he stability window applies to the electrode pair, so this is dou-
le the half-cell voltage. The critical radius computed for each case

s reported. Because these are liquids, a porous spacer membrane
s needed. A commercial product (Celgard) is 25 �m thick with a
orosity of about 0.5. For the example, a 10 �m thickness is used.

The critical radius was defined for monovalent salt. Not much
dvantage would be gained by using divalent salts such as mag-
esium sulfate, because their solubilities or concentrations of
aximum conductivity (above which they are partially nondissoci-

ted) are generally lower than monovalent salts. Other ionic liquids
ike choline lactate have higher ion concentration (lower molar vol-
me) but these have higher melting points and narrower stability
indows.

.2. Example: regenerative braking in electric vehicles

A 1500 kg vehicle traveling 108 km h−1 (30 m s−1) encounters a
top sign and must recover 675 kJ kinetic energy in 10 s (67.5 kW)
nd reuse the energy shortly thereafter. The supercapacitor storing

his energy does not experience a steady-state sinusoid as a result,
ut the frequency response information presented here will be used
s approximations of behavior at the given timescale. A maximum
perating voltage of 500 V is assumed, but to narrow the scope of
he problem, other vehicle circuit characteristics are ignored, such

able 2
epresentative (not precise) parameters for three electrolyte categories. The nonaqueous
re from BASF product literature.

5.7 M HCl Aqueous

Stability window (V) 1.4
Ion concentration (M) 5.7
Resistivity (� cm) 1.2
Critical radius (nm) 0.5
rchical (right) electrode arrangements within a device.

as the ability of the motor to deliver this power [4]. For efficiency,
it is desirable to operate below the peak power frequency and near
maximum energy density. However, an unnecessarily high value
of � will impose inconvenient constraints on device geometry and
likely increase fabrication cost. From Fig. 6, if � = 0.3 s and Rx is low,
the device is about 95% efficient on a 10 s timescale, so about 34 kJ is
dissipated. In Table 3, an electrode thickness is computed to achieve
this time constant from the parameters in Table 2. A salt depletion
margin of 2 is used, and the pore radius and length are computed
from Eq. (24) and definition of � in Section 4.2. This makes the radius
roughly 2r*, and allows slightly thicker electrodes to be used, which
improves the external to internal resistance ratio. Because the ratio
of D to L is larger for the ionic liquid, the extra ions between the elec-
trodes allow the radius to be slightly smaller. The energy density
is close to its low-frequency value under these conditions. Table 3
reports the corresponding capacitor volumes necessary to capture
the vehicle’s energy. The combination of high ion concentration and
high voltage stability makes the ionic liquid preferable by this cri-
terion. If the volumetric heat capacity is about 1.5 kJ (L K)−1 (near
that of organic solvents and graphite), or 2.5 for a capacitor com-
posed of graphite and aqueous electrolyte, the device warms by the
amounts shown in Table 3. These numbers account for the effect of
resistance ratio on efficiency.
If the operating voltage is fixed at 500 V, the ionic liquid elec-
trode stack is much thinner than the others because the electrodes
are thinner and carry more voltage per layer. The aqueous device is
relatively compact after stacking. The others could be made more
compact by pleating. Table 3 reports the pleat aspect ratio (with

solvent is a mixture of propylene carbonate and dimethoxyethane. Ionic liquid data

1 M LiClO4 Nonaqueous BMIM TFSI Ionic liquid

4.5 5
1 3.4

100 300
9 3
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Table 3
Design parameters for supercapacitors optimized to capture vehicle braking energy (675 kJ in 10 s with time constant = 0.3 s).

5.7 M HCl Aqueous 1 M LiClO4 Nonaqueous BMIM TFSI Ionic liquid

r (nm) for m = 2 0.48 8.5 2.4
L (�m) for m = 2 95 44 14
Rx,area/Rarea 0.053 0.11 0.37
Volume (L) 6.9 12.6 3.6
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�T (K) 1.4
Stack height (cm) 7.1
Stack width (cm) 31
Pleat aspect ratio 0.19

espect to stack height) at which electrode resistance becomes sig-
ificant. These are longer for nonaqueous electrolytes due to their
igher resistivity. This would allow each to be pleated or rolled into
form about as compact as the aqueous device. At this voltage, the
apacitors must be connected by short, thick conductors to operate
t peak power. To be 1 m long, the leads must be more than 2 cm
n diameter.

. Conclusion

De Levie’s model for porous electrodes is a valuable conceptual
tarting point for the design of supercapacitors, and perhaps some
orms of electrolytic capacitors [53]. Its application allows for an
nderstanding of the performance limits of these devices as mea-
ured by energy density, power density, and efficiency as a function
f frequency and material and geometric parameters. Supercapac-
tors can be designed that maximize the use of electrolyte ions
o achieve optimal energy density. Very high power densities are
ossible, but require thin electrode layers and device geometries.
ithin constraints, more compact capacitors can be formed by

se of stacking, folding, and hierarchical combinations of these.
conomical fabrication of these structures will require continued
rogress in method development. This progress will surely con-
inue, especially as demand arises for high-power storage systems
or renewable energy, vehicle, and personal electronics applica-
ions. Applied and extended versions of De Levie’s model can be
valuable and quantitative guide to that work.
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